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a b s t r a c t

The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural
convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is consid-
ered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of
molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-
dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson
solver. Numerical results for the details of the stream function, velocity and temperature contours and
profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that
the increase in thermal dispersion coefficient of the porous medium results in more heat energy to dis-
perse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing
the heat transfer coefficient particularly near the wall.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

Transport phenomena in porous media have challenged engi-
neers and researchers for quite a bit of time in trying to adopt
the appropriate framework within which solution may be attained.
The pioneering work of Henri Darcy on this issue opened the road
towards the understanding of the main essence of the subject. That
is, we do not need detailed descriptions of the motion of the fluid
within the pore structure, and even if we are able to get it we
would, for the sake of our engineering applications, integrate the
details to get some useful quantities. It has been realized by the
late seventies of the last century that we may adopt the continuum
hypothesis to transport phenomena in porous media through
upscaling processes. To adopt the continuum approach to phenom-
ena occurring in highly complex and even unknown structure im-
plies that the primary variables of interest or its derivatives that
may suffer of discontinuities at the interface between the fluid
body and the solid grains of the porous media may be replaced
by other variables that are continuous everywhere in the domain.
This would lead us to substantially decrease the number of degrees
of freedom of the system and hence made it amenable to mathe-
matical manipulations. However, to correctly adopt the continuum
hypothesis to transport phenomena in porous media, certain con-
ditions and length scale constraints need to be satisfied. Failing
to satisfy these conditions would result in the inappropriateness

of the continuum hypothesis and other sophisticated methods
need to be adopted (Salama and Van Geel, 2008).

Yet for all the simplifications that it made, the continuum
hypothesis as applied to transport phenomena in porous media
has confronted some difficulties that entailed the introduction of
some constitutive relationships to account for the apparent differ-
ences between the upscaled and the actual variables. To give an
example, the actual velocity of fluid particles within the pore struc-
tures changes significantly between zero at the interface and dif-
ferent than zero within the pores, whereas within the continuum
hypothesis the upscaled velocity may be constant or at most
changes, comparatively, slowly. This would result in the existence
of additional mass and/or energy fluxes. It has thus been hypothe-
sized that these additional fluxes may be accounted for by adding
terms to their respective flux terms that may be assumed to de-
pend on the upscaled velocity. Thus, in terms of solute transport,
the usual diffusion mechanism has been augmented by another
mechanism that is called mass dispersion term which depends
on the upscaled velocity. Likewise, energy transport (like heat
transport) in porous media required the addition of a thermal dis-
persion mechanism to the usual thermal diffusion mechanism.

In this study, we consider the effect of thermal dispersion
mechanism on the development of the thermally-driven convec-
tion boundary layer flow in porous media. This subject is of consid-
erable interest in a variety of engineering applications including
geothermal energy technology, petroleum recovery, filtration pro-
cesses, packed bed reactors and underground disposal of chemical
and nuclear waste.

Similarity solution for the Darcian regime with no dispersion
has been presented by Cheng and Minkowycz (1977). The
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dependence of heat dispersion on the upscaled velocity has been
proposed by several investigators to be linear (e.g., Fried and Com-
barnous (1976), Georgiadis and Catton (1988), Cheng (1981) and
Plumb (1983)). On the other hand, an analysis of the effect of ther-
mal dispersion on vertical plate natural convection in porous med-
ia is presented by Hong and Tien (1987). Lai and Kulacki (1989)
investigated the effect of thermal dispersion on the non-Darcy con-
vection from a horizontal surface submerged in saturated porous
media. The effects of thermal dispersion and lateral mass flux on
non-Darcy natural convection over a vertical flat plate in a fluid
saturated porous medium were studied by Murthy and Singh
(1997). Mansour and El-Amin (1999) studied the effects of thermal
dispersion on non-Darcy axisymmetric free convection in a satu-
rated porous medium with lateral mass transfer. El-Amin (2004)
investigated the effects of double dispersion on natural convection
heat and mass transfer in non-Darcy porous medium. The problem
of thermal dispersion effects on non-Darcy axisymmetric free con-
vection in a power-law fluid saturated porous medium was studied
by El-Amin (2005).

The present investigation is devoted to study the effect of ther-
mal dispersion on Forchheimer natural convection over a vertical
flat plate in a fluid saturated porous medium. The coefficient of
thermal diffusivity is assumed to be the sum of molecular diffusiv-
ity and the dispersion thermal diffusivity due to mechanical dis-
persion. The wall temperature distribution is assumed to be
uniform. The non-dimensional equations are solved using the FEM.

2. Analysis

Let us consider the non-Darcy natural convection flow and heat
transfer over a semi infinite vertical surface in a fluid saturated
porous medium, Fig. 1. The governing equations for this problem
are given by
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q ¼ q1½1 % bðT % T1Þ' ð5Þ

where q2 ¼ u2 þ v2 along with the boundary conditions

y ¼ 0 : v ¼ 0; Tw ¼ const:

y!1 : u ¼ 0; T ! T1
ð6Þ

where u [L/T] and v [L/T] are the velocity components in the x and y -
directions, respectively, ðq1CpÞf is the product of density [M/L3] and
specific heat of the fluid [L2/KT2], p is the pressure [M/LT2], T is the
temperature [K], K [L2] is the permeability constant, C is an empirical
constant, dimensionless, b is the thermal expansion coefficient [1/K],
l is the viscosity of the fluid [M/LT], g is the acceleration due to grav-
ity [L/T2], ax and ay are the components of the thermal diffusivity in x
and y directions respectively [L2/T]. The normal component of the
velocity near the boundary is considered small compared with the
vertical component and the derivatives of any quantity in the nor-
mal direction to the wall are large compared with derivatives of
the quantity in the direction of the wall (i.e., the vertical direction).
Under these assumptions Eqs. (1)–(5) become:
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Nomenclature

A constant
C empirical constant
d pore diameter
g gravitational constant
K permeability of the porous medium
kd dispersion thermal conductivity
ke effective thermal conductivity
Nux local Nusselt number
p pressure
q local heat flux
Ra Rayleigh number
T temperature
T non-dimensional temperature
u;v velocity components in the x and y directions
u,v non-dimensional velocity components in the x and y

directions

x; y Cartesian coordinates
x,y non-dimensional Cartesian coordinates
q fluid density
l viscosity
m fluid kinematic viscosity
a molecular thermal diffusivity
ad dispersion diffusivity
ax,ay thermal diffusion coefficients in x and y directions

respectively
b thermal expansion coefficient
c mechanical dispersion coefficient
w dimensional stream function

Subscripts
w evaluated on the wall
1 evaluated at the outer edge of the boundary layer
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Fig. 1. Physical model and coordinate system.
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The quantity ay is variable and is defined as the sum of molecular
thermal diffusivity a and dispersion thermal diffusivity ad. Following
Plumb (1983), we assume the dispersion thermal diffusivity as to lin-
early change with the upscaled velocity such that, ad ¼ cjujd, where c

is the mechanical dispersion coefficient whose value depends on the
structure of the porous media and d is the pore diameter.

Invoking the Boussinesq approximations, by substituting Eq. (5)
into Eq. (9), and with some mathematical manipulations, the pres-
sure term can be eliminated and the velocity components u and v
can be written in terms of stream function w as: u ¼ @w=@y and
v ¼ % @w=@x, we obtain:
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Introducing the non-dimensional transformations:

y ¼ y=d; x ¼ x=d;w ¼ w=a; T ¼ ðT % T1Þ=ðTw % T1Þ ð13Þ

The problem statement then becomes:
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Table 1
Grid independent test (Rad = 10, c = 0.5, F0 = 0.5, x = 10, y = 10).

Mesh size w T

10 ( 10 1.181790E+001 1.507303E% 001
20 ( 20 1.234669E+001 2.080401E% 001
30 ( 30 1.251212E+001 2.240477E% 001
40 ( 40 1.259287E+001 2.318501E% 001
50 ( 50 1.264069E+001 2.364608E% 001
60 ( 60 1.267229E+001 2.395064E% 001
70 ( 70 1.269473E+001 2.416684E% 001

Fig. 2. (a) Temperature contours for various values of Ra at F0 = 0.5 and c = 0.3. (b) Temperature profiles for various values of Ra with F0 = 0.5 and c = 0.3 at x = 10. (c) Stream
function contours as a function of y for various values of Ra at F0 = 0.5 and c = 0.3. (d) Stream function profiles as a function of y for various values of Ra at F0 = 0.5 and c = 0.3.
(e) Velocity contours for various values of Ra with F0 = 0.5 and c = 0.3 at x = 10. (f) Velocity profiles for various values of Ra with F0 = 0.5 and c = 0.3 at x = 10. (g) Nusselt
number as a function of x for various values of Ra with F0 = 0.5 and c = 0.3.
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